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In this paper, a new measure of bubble oscillation intensity is introduced, defined as a

non-dimensional peak pressure in the first bubble pulse. An iterative method for

determining the bubble size and bubble oscillation intensity from a record of the

acoustic pressure wave emitted by an oscillating bubble is proposed. Using this

in recent experiments with spark-generated bubbles. It can be seen that in these

experiments the bubble sizes, as defined by the first maximum bubble radius, RM1,

ranged from 12.8 to 56.4 mm, and the bubble oscillation intensities, as defined by the

non-dimensional peak pressure in the first bubble pulse, pzp1, ranged from 14.3 to 174.

Data obtained in the experiments are compared with data computed in a theoretical

model and it is shown that there are differences between the theory and experiment.

These differences are attributed to energy losses from the real bubbles not taken into

account in the theoretical model.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bubbles that oscillate in liquids may either perform useful work, as in ultrasonic cleaners [1,2], or act harmfully, as for
example with cavitation in hydraulic machinery [1,2]. For both these reasons oscillating bubbles have long been subjects of
intensive research.

A freely oscillating (pulsating) spherical bubble is basically described by its size and intensity of oscillations [3]. It is the
intensity of bubble oscillations first of all (but not exclusively) that plays an important role in all processes associated with
bubbles. In Ref. [3] amplitude has been suggested as a suitable measure of bubble oscillation intensity (the amplitude is
defined as the ratio of maximum and equilibrium bubble radii, see Eq. (2) below) and a method for determining the
amplitude from experimental data, based on scaling functions, has been described. A disadvantage of that method is that in
this way the amplitude is not determined directly from measured data but indirectly via the scaling functions, and the
scaling functions have been derived only in a theoretical form so far.

In this paper, we want to introduce another measure of bubble oscillation intensity, which is the non-dimensional peak
pressure in the first bubble pulse. An advantage of this measure is that it can be computed from the measured data directly
and thus it can be used to compare different experiments without making use of scaling functions. Nevertheless, the
previous intensity measure, the amplitude, retains its importance in theoretical computations and can be determined from
the non-dimensional peak pressure via the scaling functions as previously noted. In such a way it is also possible to
compare experiments with theory.
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The method suggested here is based on evaluating acoustic pressures radiated by oscillating bubbles. By analyzing the
pressure records both the bubble oscillation intensities and bubble sizes could be determined. The method is illustrated by
evaluating a large set of pressure records measured recently in experiments with spark-generated bubbles.

However, before starting analyzing the experimental data it seems useful to review the concept of the bubble oscillation
intensity in a theoretical framework first. This will be done in the next section. Then an experimental setup used to capture
high-speed films of the bubbles and to measure the pressure records will be briefly described and examples of the
measured data will be shown in Section 3. In Section 4 an iterative procedure allowing determining both bubble size and
bubble oscillation intensity from acoustic pressure waves radiated by oscillating bubbles will be introduced. Using the
iterative procedure, a scatter plot of intensity vs. size values (the so-called ‘bubble map’) for the experimental spark
bubbles will be given. Finally, experimental and theoretical time plots of bubble radius and of radiated pressure waves will
be compared in Section 5.
2. Bubble oscillation intensity

To introduce the concept of bubble oscillation intensity a model of the so-called gas bubble will be used first. The
intensity measure developed for gas bubbles will be then applied to spark generated bubbles.

Let us assume a spherical bubble, being in rest in an extended liquid (far from boundaries). The bubble has a radius R0

and is filled with gas. Let the ambient (hydrostatic) pressure at the place of the bubble be pN and the pressure in the liquid
at the bubble wall be P0. Finally, let the liquid temperature be YN. In the following, the ambient pressure pN and
temperature YN will be assumed to be known, as they usually can be determined in experiments easily.

At time t0 let the bubble be excited to start free oscillations (pulsations) by using one of the three basic excitations
methods [3]. Even if the real excitation method does play an important role in further bubble life, here we shall only
assume that at a time t1Zt0 the oscillating spherical bubble attains its first maximum radius RM14R0. Let us further
assume that the pressure and temperature fields in the bubble interior be spatially homogeneous at the time t1 and their
values be equal to Pm1oP0 and Ym1, respectively. As the bubble wall motion is always slow in the vicinity of the maximum
volume, to assume the two fields to be spatially homogeneous does not seem to be too far from reality.

It will be also assumed that we know the physical properties of both liquid and gas (density, velocity of sound, viscosity,
etc.). Then, for a given combination of liquid, gas in the bubble interior, ambient pressure pN, and temperature YN, the
bubble state at the time t1 is fully determined by the values of RM1, Pm1, and Ym1. After inserting these values into
equations defining a suitable bubble model we should be able to determine, at least in theory, the bubble behavior at any
further moment tZt1. Although in a more simple form (based on a number of further simplifying assumptions) this task
has already been solved a long time ago, an exhaustive description, in which more complex forms of bubble motions are
considered, is still missing. Even if great efforts have been devoted to compare theory with experiments, this task has not
been satisfactorily solved yet even in the case of the simplest oscillatory motions. However, the aim of this paper is not to
fill this gap entirely, but rather to narrow it using the concept of the bubble oscillation intensity.

Of the three parameters mentioned above, namely RM1, Pm1, and Ym1, attention will be paid to RM1 and Pm1 only. Even if
Ym1 is also of great importance, it will be omitted from further discussion simply because at present time, according to our
knowledge, there is no direct method enabling to determine the temperature in the gas Ym1 experimentally. Thus,
unfortunately, one can only speculate on what might be the real value of this parameter in a real experiment. In the
following discussion the two remaining parameters, RM1 and Pm1, shall be interpreted as the measures of the bubble size
and intensity of oscillations.

In theoretical works the equilibrium radius R0 can be used to describe the bubble size. However, it is not an easy task to
determine R0 experimentally. In most experiments it is much simpler to determine the first maximum radius RM1. This can
be done, for example, by using a high-speed photography, or by evaluating pressure waves radiated by the oscillating
bubbles. In Section 5 we shall discuss this second method of evaluating the experimental data.

The magnitude of R0 (or RM1) is decisive for taking into account influences of the surface tension, viscosity, heat
conduction and gravity. To simplify the discussion, in this paper it shall be assumed that the bubble size is such that all
these effects may be considered to be negligible. Bubbles of this size then obey scaling laws [3] and have been denoted as
scaling bubbles accordingly. For scaling bubbles it holds that P0=pN and this relation can also be used to interpret the
meaning of the equilibrium radius R0 in those cases where the ambient pressure pN is constant (see Eq. (A.2) in the
Appendix).

After the oscillating bubble attains its maximum volume at a time t1, it enters a compression phase. The achieved
rate of gas compression inside the bubble depends on the mutual relation of Pm1 and pN. This ratio will be denoted by an
asterisk, i.e.

P�m1 ¼
Pm1

p1
: (1)

The parameter P�m1 can be used as a measure of the bubble oscillation intensity in theoretical computations. In this case the
intensity of oscillations is indirectly proportional to P�m1. The smaller the non-dimensional pressure P�m1, the higher is the
bubble oscillation intensity.
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Another suitable measure of the bubble oscillation intensity is a ratio of the first maximum radius RM1 to equilibrium
radius R0:

A1 ¼
RM1

R0
: (2)

This ratio has been denoted as the amplitude of the first bubble oscillation [3].
It can be easily shown that under the simplifying assumptions mentioned above for the scaling bubbles there is a simple

relation between the two measures defined by Eqs. (1) and (2), namely

A1 ¼ ðP�m1Þ
�1=3g: (3)

Here g is the ratio of specific heats of the gas inside the bubble. Thus, the two theoretical intensity measures are
equivalent and if one is known, the other can easily be calculated from Eq. (3). Let us note that real value of g cannot be
determined from experimental data easily and thus its value used in theoretical computations is more or less speculative.
A brief discussion concerning the value of g can also be found, e.g., in Ref. [3].

Both the intensity measures introduced so far, P�m1 and A1, have their origin in theoretical bubble models. In Ref. [3]
several possible ways are shown how to determine these intensity measures from experimental data. In the following,
a new measure of bubble oscillation intensity will be introduced, which can be determined from experimental data more
directly.

To illustrate the concept of bubble oscillation intensity, examples of theoretical variations of the bubble radius R with
time t have been computed for four different values of the amplitude A1. These variations are shown in Fig. 1a. The
amplitudes selected for this purpose (A1=1.25–2.00) correspond to weak nonlinear bubble oscillation intensities. The
maximum bubble radii RM1 range from 25 to 40 mm, which is well within the range of the maximum radii of experimental
bubbles discussed in Sections 4 and 5.

The plots of bubble radius vs. time R(t) have been computed using a bubble model described in the Appendix. The
liquid, ambient pressure pN, ratio g, and bubble initial radius R0 have been selected to allow an easy comparison with
experimental data discussed in Sections 5 and 6. Bubbles of this size are assumed to fall within the range of scaling bubbles
and this assumption makes interpretation of the results much easier.

Fig. 1a displays only small portions of the radius vs. time history. These portions correspond to a time interval (t1, t2),
where t1 and t2 are the times when the bubble attains its first (RM1) and second (RM2) maximum volumes. To ease the
comparison of different curves, the plots have been mutually shifted so that all bubbles attain their first minimum volumes
(R=Rm1) at the same time, and such time is used as the time-scale origin (t=0) in this figure.

The range of amplitudes A1 used to compute R(t) has been selected to allow an easy comparison of the individual curves.
However, as it will be shown in Section 5, the range of real oscillation intensities is much larger and the majority of
experimental bubbles studied here actually oscillate with higher intensities.

In Fig. 1a the bubble oscillating with an amplitude A1=1.25 can be considered to perform weakly nonlinear oscillations.
As it can be seen, in this case the variation of radius R with time t departs only slightly from a damped harmonic motion.
However, with increasing A1, R(t) starts deviating from harmonic motion very rapidly. It can be also seen that the larger the
amplitude A1, the smaller the minimum radius Rm1.

The interval between time t1, when the bubble attains its first maximum radius RM1, and the time when the bubble
attains its first minimum radius Rm1, represents the time of the first bubble compression, Tc1, and we shall use it later to
determine the bubble radius RM1.
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Fig. 1. (a) Computed time plots of bubble radius R(t) for different amplitudes of oscillations A1. (b) Computed time plots of radiated acoustic pressures

p(t) for different amplitudes of oscillation A1.
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As the bubble oscillates it also radiates acoustic pressure waves into the surrounding liquid: a pulsating spherical
bubble is in fact an excellent zero-order acoustic radiator. Examples of the radiated pressure waves computed for different
bubble oscillation amplitudes A1 are shown in Fig. 1b.

The acoustic pressure vs. time p(t) have been computed using the bubble model described in the Appendix. The
oscillation amplitudes A1, initial radius R0, ambient pressure pN, liquid and gas have been selected to be the same as in
Fig. 1a.

The acoustic pressure waves have been computed at a nominal distance of r=1 m from the bubble center. Again, only
portions of the pressure vs. time plots are displayed in Fig. 1b. The selected portions correspond to the same time interval
(t1 and t2). Similarly, the plots have been shifted so that they attain their first peak values pp1 at the same time, which was
set to be the time-scale origin (t=0).

Also note that for a relatively small amplitude A1=1.25 the pressure vs. time history p(t) departs only partially from a
damped harmonic function. However, for larger amplitudes A1 the radiated waves quickly take the shape of pressure
pulses (called in this case the first bubble pulses). It should be noted that the peak pressure in the first bubble pulse, pp1, is
extremely sensitive to the value of the amplitude A1 because pp1 can be determined experimentally, then it can be used as a
convenient measure of bubble oscillation intensity in experimental works.

In underwater acoustics it is customary to characterize all sources by their emitted acoustic pressure measured at a
nominal distance of 1 m [4]. However, in bubble research such a description would be satisfactory only if all bubbles were
of the same size and oscillating under the same ambient pressure pN. In real life this is not the case and thus a more
suitable description of the bubble as an acoustic radiator is done by using a non-dimensional peak pressure in the first
bubble pulse pzp1 defined as

pzp1 ¼
pp1

p1

r

RM1
: (4)

Let us remark that by multiplying the peak pressure pp1 with r this pressure is recalculated to a nominal distance r=1 m
and by dividing it by RM1 it is recalculated for a nominal bubble size RM1=1 m. By dividing this result with pN we obtain
finally a non-dimensional number.

In this paper, this non-dimensional peak pressure in the first bubble pulse is suggested to be a new measure of bubble
oscillation intensity. In this case, by inserting experimental data into Eq. (4) we obtain a simple non-dimensional number
describing the bubble oscillation intensity irrespective of the actual bubble size RM1 and distance r, at which the peak
pressure pp1 has been measured.

The new measure of bubble oscillation intensity, pzp1, is suitable when dealing with experimental pressure records first
of all. However, we often need to interpret the data also by using the intensity measure derived from a theoretical model,
i.e. A1. Finding a satisfactory link between experimental data and a theoretical model is not a simple task (see, for example,
the discussion in Ref. [3]). However, as a first approximation a functional dependence between pzp1 and A1 can be
computed using a theoretical model. The variation of A1 with pzp1 computed with the bubble model described in the
Appendix is given in Fig. 2.

Using Fig. 2, one can easily express the intensities of bubble oscillations shown in Fig. 1a and b using the new intensity
measure. Thus, if the amplitude is A1=1.25, the corresponding non-dimensional peak pressure is pzp1=1.02, if A1=1.5, then
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Fig. 2. Functional dependence between the non-dimensional peak pressure in the first bubble pulse pzp1 and amplitude of the first oscillation A1.
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pzp1=2.7, if A1=1.75, then pzp1=6 and finally if A1=2, then pzp1=12.8. We shall show later in Section 4, the intensities with
which oscillate the spark generated bubbles are much higher.

As it can be seen in Figs. 1a and b, at a time t1, when the bubble attains its maximum radius RM1, it also radiates an
acoustic pressure having a maximum negative (trough) value. When the bubble is compressed to the minimum radius Rm1,
it radiates a positive peak pressure pp1. By denoting tp1 the time when the positive peak is radiated, then the first
compression time of the bubble equals Tc1=tp1�t1 (note that for simplicity the propagation time between the bubble wall
and the point r in the liquid is not considered in this discussion).

The time of the first bubble compression Tc1 can be conveniently used to estimate RM1 from pressure records obtained
experimentally. For this purpose it is useful to introduce a non-dimensional compression time Tzc1

Tzc1 ¼
Tc1

RM1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=p1

p : (5)

As it can be seen in Figs. 1a and b, Tc1 depends both on bubble size and on bubble oscillation intensity. To obtain a
scaling function the dependence of Tc1 on RM1 can be easily removed by dividing Tc1 with RM1 as it is done in Eq. (5). The
dependence of Tc1 on pzp1 is more involved. Unfortunately, at present time this variation of Tc1 vs. pzp1 has not been
determined experimentally yet. Thus, as a first approximation, it is possible to compute the variation of Tzc1 with pzp1 using
the bubble model described in the Appendix. The variation thus determined is shown in Fig. 3. It can be seen that for
pzp1450 the non-dimensional time of bubble compression is almost independent of pzp1.

In Section 6 we shall apply the concepts introduced here to determine the bubble sizes and oscillation intensities in the
case of experimental bubbles.

3. Experimental setup

Freely oscillating bubbles were generated in a laboratory water tank having dimensions 6 m�4 m�5.5 m using spark
discharges. The experimental setup is schematically shown in Fig. 4.

The sparks were initiated between two electrodes (the sparker) made of tungsten wires of diameter 1–1.3 mm. The
sparker was submerged in water at a depth of 2.5 m and about 1.2 m away from the nearest tank wall. The electrodes were
connected to a capacitor bank, whose capacitance could be varied in steps. The capacitor bank was charged from a high
voltage source, and an air-gap switch was used to trigger the discharge through the sparker.

Two configurations of the capacitor bank and high voltage source have been used. In the first case the total capacity
could be varied in 40mF steps from 40 to 360mF and the charging voltage could be varied continuously from 2 to 2.6 kV. In
the second case the bank capacity could be varied in steps of 16mF from 16 to 160mF and the charging voltage was 4 kV.

A limited number of high-speed camera records have been taken with a framing rate ranging from 2800 to 3000 frames/s.
However, the main interest of this work was to study the acoustic pressure waves radiated by oscillating bubbles. These waves
were recorded using two types of broadband hydrophones. The first hydrophone was Reson type TC 4034 with a nominal
usable range from 1 Hz to 470 kHz and receiving sensitivity of �217.2 dB re 1 V/mPa. The second hydrophone was Reson type
TC 4038 with a nominal usable range from 10 to 800 kHz and receiving sensitivity of �235.1 dB re 1 V/mPa. The hydrophones
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Fig. 4. Experimental setup for generating spark bubbles and recording their shape and radiated acoustic waves.

Fig. 5. Selected frames from a film record of the spark generated bubble (RM1=51.5 mm, pzp1=70.3, A1=2.7156). Light spots at the frame’s sides are due to

illuminating lamps.
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were positioned at distances r from the bubble center ranging from 0.1 to 2 m. The hydrophones were connected via voltage
dividers to a digital acquisition board (National Instruments type NI 6115) having a resolution of 12 bits and sampling
frequency 10 MHz. The length of each record was set to 20 ms.

Altogether 10 films have been taken in the experiments. Examples of several frames from one film corresponding to
different times are given in Fig. 5.

In Fig. 5 the first frame corresponds to time when the intensive light generated by electric discharge has faded enough,
so that the bubble starts to be visible. The second frame shows the bubble near its first maximum radius. The third and
fourth frame show the bubble successively at the final stages of the compression, the fifth frame is the first view available
after the bubble passed through the minimum volume and finally the sixth frame shows the bubble early after passing the
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second maximum volume. The individual frames can be traced to corresponding points on the plot of bubble radius vs.
time given in Fig. 8.

From the film records it was verified first of all that the bubbles generated in these experiments retained almost
spherical shapes in the vicinity of the first and second maximum volumes. Though it is a relatively straightforward
procedure to determine the bubble size (the maximum radius RM1) from the film records, not much can be inferred about
the bubble oscillation intensity from the frames. This question will be discussed in greater detail in Section 5. It could be
also verified from the film records that the bubbles behave almost adiabatically during the first oscillation.

As already mentioned in this work great attention was paid to measuring the acoustic pressure waves radiated by
oscillating bubbles. Recently, a total of several thousand pressure records have been obtained using different experimental
configurations. An example of one pressure record is shown in Fig. 6. This pressure record has been measured at the
distance r=0.1 m and recalculated to the nominal distance r=1 m.

As it can be seen in Fig. 6, the recorded wave consists of several pressure pulses, which can be identified as an initial
pressure pulse p0(t), the first bubble pulse p1(t), the second bubble pulse p2(t), and so on.

The initial pressure pulse p0(t) is radiated during the delivery of energy into the discharge channel (bubble excitation
phase). When the bubble attains its first maximum radius, RM1, the maximum negative value in the acoustic pressure wave
is radiated. When the bubble is compressed to a minimum radius, Rm1, the maximum positive value of the acoustic
pressure wave is radiated. This maximum positive value is referred to as the peak pressure in the first bubble pulse, pp1.
The time interval between the time t0, when the pressure in the initial pulse p0(t) starts rising, and an instant tp1, when the
pressure attains the peak value pp1, corresponds to the time of the first bubble oscillation To1.

After the bubble is compressed to the first minimum radius Rm1, it starts a series of further oscillations during which it
radiates the second bubble pulse p2(t), the third bubble pulse p3(t), etc.

In Section 2 we have already noticed that the peak pressure pp1 is very sensitive to the intensity of bubble oscillations.
In the next section we shall use its non-dimensional form, as defined by Eq. (4), as a measure of the bubble oscillation
intensity suitable for bubble description in experimental works.

4. The bubble map

The concept of what is here called the ‘‘bubble map’’ has been introduced in Ref. [3] to display the limits (frontiers) of
different influences (such as liquid viscosity, heat conduction, gravity, etc.) on the bubble motion conveniently. The bubble
map proved also very useful when comparing different experimental bubbles using only the two descriptive parameters,
namely the bubble size and bubble oscillation intensity. In this case the bubble map is simply an X–Y scatter plot in which
each point represents a single bubble.

As previously said, the bubble size of the spark generated bubbles can be easily determined from the pressure records.
This was done by measuring the first oscillation period, To1, and assuming To1=2Tc1. Then Eq. (5) can be rearranged to yield

RM1 ¼
To1

2Tzc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=p1

p : (6)
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In the case of scaling bubbles the non-dimensional compression time, Tzc1, is independent of the bubble size, RM1.
However, as it can be seen in Fig. 3, it depends on bubble oscillation intensity, pzp1, and as follows from Eq. (4), the non-
dimensional peak pressure, pzp1, depends on the bubble size, RM1. Thus we need to find RM1 and pzp1 from experimental
values of r, To1, and pp1, and from variation of Tzc1 with pzp1, as given in Fig. 3. A following iterative procedure has been used
to solve this task.

For each pressure record we begin computations using a value of Tzc1=0.93722, which corresponds to pzp1=70 in Fig. 3.
This value represents a first estimate of Tzc1. Then using this value of Tzc1 and a value of To1 determined from a given
pressure record, we compute from Eq. (6) the first estimate of RM1. This estimate is then inserted together with
corresponding values of pp1 and r into Eq. (4) to obtain a first estimate of pzp1. Using this first estimate of pzp1 we can
determine a second estimate of Tzc1 from Fig. 3. With this second estimate of Tzc1 we can calculate a second estimate of RM1

from Eq. (6) and a second estimate of pzp1 from Eq. (4). This procedure can be then repeated to obtain the third estimate of
RM1 and pzp1, and so on. Using theoretical data (in which case we know RM1 and pzp1 exactly) we have verified that
satisfactory results can be obtained after only two iterations (i.e., after computing the third estimates of RM1 and pzp1). A
suitable code has been written in Matlab and all experimental records have been processed using this procedure. The
values of RM1 and pzp1 obtained in this way for a selected experimental configuration are displayed in the bubble map
shown in Fig. 7. The experimental configuration corresponds to charging voltage 4 kV and hydrophone TC4038.

The variation of Tzc1 with pzp1 used in the iterative procedure (Fig. 3) has been determined with a theoretical model. It is
evident that the reliability of the suggested iterative method will increase when this variation of Tzc1 with pzp1 is
determined experimentally, using, e.g., combination of a suitable optical method and pressure record measurements.

From the bubble map it can be seen that in the selected experiments a relatively broad range of both bubble sizes (RM1

ranging from 12.8 to 56.4 mm) and bubble oscillation intensities (pzp1 ranging from 14.3 to 174, which corresponds to A1

ranging from 2.04 to 3.4, and to P�m1 ranging from 0.01 to 0.069) was obtained.
It has been verified (e.g., by comparing the energy spectral densities of the records measured with the two

hydrophones), that the points lying in the right lower corner of the bubble map have been recorded with high accuracy. On
the other hand, uncertainty of the obtained peak pressure values is the highest at the left upper corner of the bubble map,
where the limited bandwidth of the hydrophone may cause some filtering and thus the actual peak pressure might be
higher than the measured one. However, even here the error does not seem to be extremely large. We intend to touch this
point in greater detail in a separate work.

It should be noted here that a slightly different procedure is often used in literature to determine the bubble size from
To1 (see, e.g., Ref. [5]). That procedure is based on the so-called collapse time of an empty bubble Tzc1=0.91468, that was
first analytically determined by Rayleigh [6]. We consider the procedure used here to be more appropriate for several
reasons. First, Rayleigh has computed his collapse time under an assumption of an empty bubble (i.e., for P�m1=0, and as it
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Table 1
Comparison of the values of RM1 and pzp1 computed from the experimental data using, first, the Rayleigh’s collapse time Tzc1=0.91468, and second, the

iterative procedure described in this work.

Experimental data Rayleigh’s result Iterative procedure Difference (%)

1st bubble r=0.1 m, pp1=0.6235 MPa RM1=28.23 mm RM1=26.51 mm 6.1

To1=4.6211 ms pzp1=17.67 pzp1=18.81 6.1

2nd bubble r=0.1 m, pp1=4.1944 MPa RM1=23.53 mm RM1=23.25 mm 1.2

To1=3.8520 ms pzp1=142.60 pzp1=144.33 1.2
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can be seen from Eq. (1), this corresponds to infinite amplitude of the first bubble oscillation, i.e., to A1-N). Second,
Rayleigh has assumed a non-compressible liquid. It is clear that real bubbles oscillate with finite amplitudes (see Fig. 7)
and in compressible liquids. It must also be noted that the difference between the values of RM1 obtained with Rayleigh’s
collapse time Tzc1 and using the iterative procedure introduced here is larger for small intensities of oscillation. As the
intensity of oscillation increases, this difference keeps decreasing.

Let us give a concrete example considering two experimental pressure records. One has been obtained observing a
bubble oscillating with low intensity and the other with high intensity. The experimental data determined from the two
pressure records and the values of RM1 and pzp1 determined from Eqs. (4) and (6) using both the Rayleigh’s collapse time
Tzc1=0.91468, and the iterative procedure described here are summarized in Table 1.

As it could be expected, the difference between the two procedures is larger for the bubble oscillating with a low
intensity than for the bubble oscillating with a high intensity. The reason for this can be seen in Fig. 3, where the
compression time is approaching the Rayleigh’s collapse time for larger oscillation intensities.

It is also interesting to compare the values found here and displayed in Fig. 7 with results of other authors. For example,
Mellen [7] also studied spark generated bubbles. In his work the bubble sizes RM1 ranged from 6.5 to 25 mm and the non-
dimensional peak pressures pzp1 ranged from 75 to 180. Teslenko [8] generated bubbles with a laser. In his experiments the
bubble sizes RM1 ranged from 1.3 to 5 mm and the non-dimensional peak pressures pzp1 ranged from 80 to 120. Similarly,
Hentschel and Lauterborn [9] report results obtained in experiments with laser generated bubbles. Their bubbles had sizes
RM1 ranging from 2.3 to 4 mm and the measured non-dimensional peak pressures pzp1 ranged from 65 to 100. Isselin et al.
[10] also generated bubbles by laser and in this case the bubble sizes RM1 ranged from 0.9 to 3.8 mm and the non-
dimensional peak pressures pzp1 ranged from 167 to 197. Recently, Lindau and Lauterborn [11] published results of their
measurement. Using their data one can see that in this case the bubble sizes RM1 ranged from 0.6 to 2.6 mm and the non-
dimensional peak pressures pzp1 ranged from 210 to 250. Finally, in an earlier work Vogel and Lauterborn reported their
results [12] obtained with bubbles generated by laser. According to data published in this case the bubble sizes RM1 ranged
from 1.2 to 5.1 mm and the non-dimensional peak pressures pzp1 ranged from 500 to 880. As this last value is extremely
high we prefer giving its computation here in detail. According to Fig. 10 in Ref. [12], for a bubble having a maximum
radius RM1=5 mm the measured peak pressure at a distance r=10 mm was pp1=440 bar, then assuming pN=1 bar, the non-
dimensional peak pressure is pzp1=880, as given above. The data of other authors are compared with results found in this
work in Fig. 7.

All the values discussed in the previous paragraph were taken from graphs published in the respective works and the
data have been recalculated to obtain the quantities used here. This procedure is certainly not very precise and thus the
values given should be taken as illustrative first of all. Nevertheless, it can be seen that as far as the intensities of
oscillations are concerned they are basically the same as found here or partially higher. All reported intensities are also
increasing with the bubble size. It certainly would be interesting to know why are the bubbles oscillating more intensively
in some experiments than in others and what is the cause for the increase of intensities with the bubble size. We intend to
give a partial answer to these questions elsewhere. However, to obtain a deeper explanation, new experiments should be
made aiming at explaining these questions.
5. Comparison of theoretical and experimental data

In this section, the experimental records will be compared with theoretical data obtained using the bubble model given
in the Appendix. For this comparison an experimental bubble has been selected for which we have both a pressure record
and a film record available and which is oscillating with a relatively low intensity so that no finite-amplitude wave effects
in propagation of the radiated pressure wave have been observed.

Using the procedure described in Section 4, the bubble size, RM1, and the non-dimensional peak pressure, pzp1, of this
bubble have been determined first. Then from Fig. 2 it was possible to determine the corresponding amplitude of the first
bubble oscillations, A1. After inserting this values of A1 into the bubble model given in the Appendix it was possible to
compute the theoretical variations of R(t) and p(t). These theoretical variations can be then compared with experimental
records.
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Fig. 8. Comparison of experimental (J) and theoretical (—) time histories of the bubble radius R(t) (RM1=51.5 mm, pzp1=70.3, A1=2.7156).
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The variations of the bubble radius R with time t, both experimental and theoretical, are shown in Fig. 8.
The experimental points in Fig. 8 have been determined from frames as are those shown in Fig. 5. As the experimental

bubble is not ideally spherical (it is slightly elongated in vertical direction), the data points represent an average from two
perpendicular dimensions—one in a horizontal and the other in a vertical direction.

The origin of the time scale for experimental data can be determined from the film records only with an uncertainty
equal to the time step between two subsequent frames and this time step is relatively large in the case of low framing rates
(357ms in this particular case). Hence the experimental points have been shifted along the time scale until the best
agreement with a theoretical curve is obtained.

The theoretical curve has been computed for A1=2.7156 starting at RM1 and ending at RM2. The part of R(t) between RM1

and Rm1 has been then reverted and inserted into the figure to obtain the theoretical variation even for earlier times tot1.
In doing this we have assumed that the time behavior of radius is symmetric around the time corresponding to the
maximum radius RM1. Times of different frames given earlier in Fig. 5 have been then taken from Fig. 8.

As it can be seen in Fig. 8, the theoretical curve fits the experimental points in the vicinity of RM1 relatively well. This is
not surprising. It is well known that near RM1 the radius vs. time variation R(t), when suitably matched to RM1, is almost
identical for all bubbles oscillating with sufficiently high intensities (cf. normalized radius vs. time variations
corresponding to A142 in Fig. II-1 in [13]). In other words, this ‘‘inverted tea cup’’ form is insensitive to the oscillation
intensity. For different oscillation intensities the bubble radius vs. time will differ only in the vicinity of the bubble
minimum radii, Rm1. As it can be seen in Fig. 8, this is a very narrow region lasting very shortly. The framing rate in the
present experiment (2800 frames/s) was certainly not sufficient to examine this area in detail. However, as it is discussed
elsewhere, even for the relatively large bubbles generated in these experiments, which are oscillating slowly (for the
scaling bubbles the time of the first oscillation To1 is directly proportional to the first bubble maximum radius RM1—cf.
Eq. (6)), the framing rate necessary to catch the details of the bubble motion near its minimum radius Rm1 should be higher
than 106 frames/s. When taking into account certain randomness always present in generating the experimental spark
bubbles, the film record should be rather long. These requirements are still prohibitive for most experimental laboratories
at present time. Thus, it is very difficult to estimate the bubble oscillation intensity from the film records, at least in our
case. Therefore, it is also almost impossible to say anything about the actual value of Rm1.

As it can be seen in Fig. 8, the difference between theory and experimental points starts to grow for times t4tp1

significantly. This is because the theoretical model used here assumes the so-called gas bubble. However, the experimental
spark bubbles behave, most probably, at least for times t4tp1, as the so-called vapor bubbles. Secondly, there might also be
energy losses not taken into account in this theoretical model. These are very delicate topics that we wish to discuss in a
separate work. Preliminary results in this respect have been given in Refs. [14,15].

An experimental pressure record is compared with a theoretical variation in Fig. 9. Both the experimental and
theoretical pressure records correspond to the radius vs. time histories displayed in Fig. 8. A detailed view at Fig. 9 will
reveal that there are no finite-amplitude waves effects present in the pressure record.

A certain agreement between the experimental pressure wave and theoretical pressure variation can be seen. However,
as can be also seen, the theoretical bubble pulse is broader, and this is true especially for the trailing edge of the bubble
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pulse. This point has been already briefly discussed elsewhere [15] and reference to it will be done once again later on in a
separate work. Again this discrepancy only shows the differences between the experimental data and the present theory.

In discussing results displayed in Figs. 8 and 9 an important question arises on how to fit theoretical data to
experimental data with best accuracy. In this work, a procedure based on fitting the peak pressure in the first bubble pulse
pp1 and the first bubble maximum radius RM1 was used. Thus, we obtained a relatively good agreement between
experimental data and theoretical curves both for the radius and acoustic pressures histories within the first time of bubble
oscillation. However, for later times the theoretical variations start to depart from experimental data significantly. This
departure is attributed here to an unsuitable theoretical bubble model, which is not taking into account all energy losses
associated with bubble oscillations.

However, let us say here that a different approach is most often found in the literature (see, e.g., Refs. [5,18–24]). In that
approach an agreement between experimental data and theoretical curves is sought just for the radius vs. time variation,
and not only for the first time of bubble oscillation like here, but also for the second time of bubble oscillation. This means,
one is trying to fit the theoretical curve to two maximum bubble radii, RM1 and RM2. To obtain the required decrease in the
bubble radius RM2, the bubble oscillation intensity in the theoretical model is increased up to a degree, when radiated
acoustic energy covers all excessive energy losses in the experimental bubble, that is, until the computed second maximum
radius, RM2, agrees with the experimentally determined one. In this case one obtains a good fit of the radius vs. time history
up to the second maximum radius RM2. However, let us remark that in this case the calculated peak pressures in the first
bubble pulse, pp1, will exceed by far the measured peak pressures.

It is clear that this point will require further discussions and further supporting arguments, both experimental and
theoretical ones, to decide which approach is more correct. Nevertheless, let us remind that earlier arguments supporting
our assumptions can be found in Ref. [3]. These earlier arguments have been based on experimental data published in
literature. Now using our own experimental data we intend to discuss this point in greater detail in a separate publication.
6. Conclusions

In the present work it is suggested that to describe adequately a spherical bubble oscillating in a liquid in a zero-order
mode (pulsating bubble), beside knowing the liquid and gas properties and the ambient pressure and temperature, at least
two further parameters are needed: the bubble size and bubble oscillation intensity. The first maximum bubble radius,
RM1, can conveniently describe the bubble size. The bubble oscillation intensity can be described in theoretical works by
the amplitude of the first oscillation, A1, and in experimental works by the non-dimensional peak pressure in the first
bubble pulse, pzp1.

An iterative procedure suitable to determine both RM1 and pzp1 from pressure waves, radiated by oscillating bubbles,
was introduced. The procedure is demonstrated on a set of acoustic pressure waves recorded in recent experiments with
spark generated bubbles. The calculated values of these two parameters are displayed in the bubble map. It can be seen
that in the present experiments the bubble sizes RM1 ranged from 12.8 to 56.4 mm, and the bubble intensities, pzp1, from
14.3 to 174.
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To keep the discussion within reasonable limits many points have been assumed but not discussed here. These points
concern, for example, reliability of the measured pressure records. To measure pp1 correctly the recording apparatus must
have a suitable bandwidth. Preliminary results concerning this question have been published at a seminar [16]. Another
important point concerns assumption of the scaling bubbles. Also in this case the discussion of this question is postponed
to elsewhere. It was also assumed that no shock fronts develop in the first bubble pulse during its propagation in the liquid.
Preliminary results concerning the limits for the finite amplitude wave propagation effects have been presented at a
seminar [17] and it has been shown that the limiting intensity of bubble oscillations is approximately pzp1=80. For lower
intensities of bubble oscillations no nonlinear effects in pressure wave propagation have been observed. Exactly these
weakly oscillating bubbles have been used here to demonstrate some important points.

The intensity of bubble oscillation has been introduced here because it is believed to be an important parameter for
describing the oscillating bubbles. However, it should be also said here that it is not common in the literature to use any
explicitly defined intensity measure though the intensity measure is always present in computations, if not explicitly, then
implicitly, e.g., in a form of initial conditions, in a form of the driving pressure field, etc. To prove that it is not a superfluous
parameter, we intend to exploit this new intensity concept also in other contexts, e.g., when determining experimental
scaling functions or spectral properties of the bubble pulses. As already mentioned it has been used recently to find a
suitable hydrophone’s bandwidth [16] and to determine conditions under which the shock fronts may develop in bubble
pulses [17]. On the other hand it is difficult to predict whether the intensity measure suggested here (pzp1) could be
successfully used in a more complex environment, such as that encountered in clinical situations [26]. Only new
experiments can verify this issue.
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Appendix. A theoretical model

In the following, equations defining Herring’s simplified model will be given. This model has been selected because, in
our experience [15], it gives the best fit to experimental data. However, as we have pointed out several times in the text,
the overall accuracy of the model is not satisfactory. Let us say here that the accuracy would be not increased by using a
different liquid compressibility equation (e.g., Gilmore’s equation). In our opinion the problem lies in the fact that we do
not know all the processes associated with the bubble oscillations satisfactorily at present time and this gap in our
knowledge cannot be overcome by theoretical speculations, but only by collecting the experimental evidence first.

In Herring’s simplified model of the scaling bubble the equation of motion for the bubble wall has a form [25]

€RRþ
3
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_R ¼

1

r1
P�p1þP

_R
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 !
: (A.1)

Here R denotes the bubble radius, rN the liquid density, P the pressure in the liquid at the bubble wall, pN the ambient
pressure and cN the speed of sound in the liquid. Dots denote differentiating with respect to time. For the tasks solved here
the initial conditions of Eq. (A.1) are R(0)=RM1 and dR(0)/dt=0.

For the scaling bubbles the gas inside the bubble is assumed to be compressed and expanding adiabatically and the
effects of surface tension, liquid viscosity and gravity need not be considered. Then the pressure in the liquid at the bubble
wall can be written as

P¼ p1
R

R0

� ��3g
: (A.2)

Here g is the ratio of specific heats.
For moderate bubble oscillation intensities, for which no finite-amplitude wave effects can be expected, the acoustic

wave p(t) radiated by the bubble can be conveniently determined using a simple expression

p¼ pt�p1 ¼ P�p1þ
1
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r1 _R

2
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R

r
: (A.3)

Here pt is the total pressure field in the liquid and r is the point in the liquid in which p(t) is being determined.
With respect to experiments reported in this work the maximum radii of the theoretical bubbles shown in Figs. 1a and b

have been selected to be in the range from 25 to 40 mm (equilibrium radius R0=20 mm) and Eqs. (A.1)–(A.3) have been
solved using the following values of the environmental and physical quantities:

p1 ¼ 127:5 kPa r1 ¼ 103 kg m�3, c1 ¼ 1480 m s�1, g¼ 1:25:

For the given amplitude A1 the initial pressure at the bubble wall, Pm1, has been determined using Eqs. (1) and (3).
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The theoretical model presented above assumes adiabatic bubbles, for which thermal losses are not important.
However, readers studying smaller bubbles and thus interested in incorporating thermal losses into a theoretical model
can find suitable treatments, for example, in Refs. [27–29]. The case where the bubbles lose their sphericity can be dealt
with using an approach presented in [30].
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